AL- BIOSERVICESLaboratory Testing Services

Test Report for Handrub/Sanitiser Products BS EN 13727:2012+A2:2015

Company Name: MEDISANITIZE

Company Address: B5 BUCKSHAW LINK, BUCKSHAW VILLAGE, CHORLEY.PR7 7EL

Product Name: MEDISANITIZE ALCOHOL WIPES (HAND WIPES / SURFACE WIPES)

Purchase Order No: PO1001

Report Date: 04/09/2020

Report Number: MEDAL1712A

Sample Details:

Manufacture / Supplier	MEDISANITIZE
Product storage conditions:	Ambient
Appearance of the product (as supplied)	
Appearance of the product (after dilution)	
Appearance of product with interfering substance and test organism:	
Active substancænd concentration	
Product dilutions/concentrations	, ,
Diluent used todilute product	N/A

The test product was in satisfactory condition for testing when received.

Date product received: 06/08/20 Test Date: 19/08/20

Experimental Conditions:

Interfering substance: Bovine Albumin (dirty 3.0g/l) plus 3ml/lerythrocytes

Test temperature: 18 to 25°C Contacttime: 5 Minutes

Test organisms: Pseudomonas aeruginosa ATCC 15442

Staphylococcus aureus ATCC 6538 Enterococcus hirae ATCC 10541

AL- BIOSERVICESLaboratory Testing Services

Test Report for Handrub/Sanitiser Products BS EN 13727:2012+A2:2015

Requirements of the Standard:

The test product shall demonstrate at least a 5 decimal logarithm (lg) reduction when tested in accordance with this standard under simulated clean or dirty conditions.

Conclusion:

For the product Wipes, [Batch:001] the log reduction requirements as specified in EN 13727 (5 lg within the relevant contact time) were met for dirty conditions and a contact time of 5 minutes.

Test Results:

Neutralisation Method Used:

Dilution neutralisation by pour plate

Neutraliser used: N1

Pseudomonas aeruginosa ATCC 15442

	47 52.5 Vc 2 50 56.5 Vc 2 43 47.5 Vc 2 42 50.							Ref No	1712A					
Validation	•	on (<i>NvB)</i> x	Validatio	n suspens	ion (<i>Nv</i> ₀)	·			Neut	ralizer cont	trol (B)	Method validation Product conc:		on (<i>c</i>) RTU%
Vc 1	58	_ =	Vc 1	63	_ =	<i>Vc</i> 1	52	_ =	Vc 1	59	_ =	Vc 1	66	_ =
Vc 2	47	52.5	Vc 2	50	56.5	Vc 2	43	47.5	Vc 2	42	50.5	Vc 2	40	53
3.0x10 ⁴ ≤	 X of <i>NvB</i> ≤ Yes	≤ 1.6x10 ⁵ ?	30 ≤	X of Nv₀≤ Yes	160?	X of A i	\overline{X} of A is $\geq 0.5 \times \overline{X}$ of Nv 0? \overline{X} of B is $\geq 5.0 \times 10^{-4} \times \overline{X}$ of NvB Yes Yes			X of NvB ?	X of C is	of Nv o?		

					l N			_			
٦	Test suspension and	test				Vc 1	Vc 2	X m	4.40E+08	; lg N =	8.64
				pension d N ₀):	10 -6	>330	>330	N o = N /10); lg N ₀ =	7.64	
			(/v and	u 14 0j.	10 ⁻⁷	45	43	_	N ₀ ≤7.70?	Yes	
								X quo	tient = >5 an	d <15?	N/A
			•			1	1		ī		
	Conc. of the product (%)	Vc 1	Vc 2	Na =	X x10	lg Na	N o =	g R 7.64	Contac	t time	Result
ŀ	RTU%	<14	<14	1 //	DE+02	<2.15		>5.50	5 Min	utos	Pass
ı	111070	\14	\14	1.40	JL 102	~2.13		/3.30	J IVIII	iutes	F 033

AL- BIOSERVICES Laboratory Testing Services

Test Report for Handrub/Sanitiser Products BS EN 13727:2012+A2:2015

Staphylococcus aureus ATCC 6538

	Validation and controls On suspension $(NvB) \times 10^3$ Validation suspension $(Nv \circ)$ Experimental conditions control (A) Neutralizer control (B) $\overline{54}$ $\overline{X} = Vc \ 1$ $\overline{69}$ $\overline{X} = Vc \ 1$ $\overline{62}$ $\overline{X} = Vc \ 1$ $\overline{63}$ $\overline{X} = Vc \ 1$ $\overline{A} = Vc \$						Ref No	1712A						
Validation	•	on (<i>NvB)</i> x	Validation suspension (Nv 0)			•			Neut	ralizer cont	trol (B)	Method validation		on (<i>C</i>) RTU%
<i>Vc</i> 1	54	_ =	<i>Vc</i> 1	69	x =	Vc 1	62	x =	Vc 1	63	=	<i>Vc</i> 1	60	=
Vc 2	48	51	Vc 2	49	59	Vc 2	53	57.5	Vc 2	52	57.5	Vc 2	49	54.5
3.0x10 ⁴ ≤	51		30 ≤ X of Nv ₀ ≤ 160? Yes			\overline{X} of A is $\geq 0.5 \times \overline{X}$ of Nv_0 ? Yes			\overline{X} of B is $\geq 5.0 \times 10^{-4} \times \overline{X}$ of NvB? Yes			X of C is	of Nv o?	

res						res			res		res		
	Test suspe	nsion and	on and test				Vc 1	Vc 2	X m	5.00E+08	; lg N =	8.70	
				Test suspension (N and N 0):		10 ⁻⁶	-6 >330 >330 N ₀ = N/10; lg N ₀				7.70		
		10 ⁻⁷	53			47	7.17 ≤ lg. —						
									X quo	tient = >5 ar	nd <15?	N/A	
	Conc. produ		Vc 1	Vc 2	Na =	_ X x10	lg Na	N 0 =	g R Conta		tact time Res		
	RTI	U%	<14	<14	1.40	DE+02	<2.15		>5.55	5 Minutes		Pass	

Enterococcus hirae ATCC 10541

				V	alidation	and contr	ols .					$\overline{X} = Vc 1$ $Vc 2$)	1712A
Validation	n suspensio	on (<i>NvB)</i> x	Validatio	n suspens	ion (<i>Nv</i> ₀)	Experimental conditions control (A)			Neut	ralizer cont	trol (B)	Method validation		on (<i>C</i>) RTU%
Vc 1	60	_ =	<i>Vc</i> 1	55	x =	Vc 1	64	_ =	Vc 1	59	_ =	Vc 1	54	_ =
Vc 2	45	52.5	Vc 2	44	49.5	Vc 2	61	62.5	Vc 2	49	54	Vc 2	53	53.5
3.0x10 ⁴ ≤	 X of <i>NvB</i> ≤ Yes	≨ 1.6x10 ⁵ ?	30 ≤	X of Nv₀≤ Yes	160?	\overline{X} of A is ≥ 0.5 x \overline{X} of Nv 0? \overline{X} of B is ≥ 5.0x10 ⁻⁴ x \overline{X} of NvB? Yes		X of Ci	x of C is ≥ 0.5 x x Yes					

	•								-		
Te	est suspension and	test			N	Vc 1	Vc 2	X m	4.00E+08	; lg N =	8.60
			Test suspension (N and N ₀):		10 ⁻⁶	>330	>330	$N_0 = N/10$); lg N ₀ =	7.60	
				10 ⁻⁷	45	35	7.17 ≤ lg <i>l</i> _ X quot	N/A			
_	ı										
	Conc. of the product (%)	Vc 1	Vc 2	Na =	$Na = \overline{X} \times 10$		N o =	g R 7.60	7.60 Contac		Result
	RTU%	<14	<14	1.40	E+02	<2.15	<2.15		5 Minutes		Pass

